amazon

Internet history


Internet History

Research into packet switching, one of the fundamental Internet technologies, started in the early 1960s in the work of Paul Baran,and packet-switched networks such as the NPL network by Donald DaviesARPANET, the Merit NetworkCYCLADES, and Telenet were developed in the late 1960s and early 1970s. The ARPANET project led to the development of protocols for internetworking, by which multiple separate networks could be joined into a network of networks. ARPANET development began with two network nodes which were interconnected between the Network Measurement Center at the University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science directed by Leonard Kleinrock, and the NLS system at SRI International (SRI) by Douglas Engelbart in Menlo Park, California, on 29 October 1969 The third site was the Culler-Fried Interactive Mathematics Center at the University of California, Santa Barbara, followed by the University of Utah Graphics Department. In an early sign of future growth, fifteen sites were connected to the young ARPANET by the end of 1971. These early years were documented in the 1972 film Computer Networks: The Heralds of Resource Sharing.
Early international collaborations for the ARPANET were rare. European developers were concerned with developing the X.25 networks. Notable exceptions were the Norwegian Seismic Array (NORSAR) in June 1973, followed in 1973 by Sweden with satellite links to the Tanum Earth Station and Peter T. Kirstein's research group in the United Kingdom, initially at the Institute of Computer ScienceUniversity of London and later at University College London. In 1974, RFC 675 used the term internet as a shorthand for internetworking, and later RFCs repeated this use. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). In 1982, the Internet Protocol Suite (TCP/IP) was standardized, which permitted worldwide proliferation of interconnected networks. TCP/IP network access expanded again in 1986 when the National Science Foundation Network (NSFNet) provided access to supercomputer sites in the United States for researchers, first at speeds of 56 kbit/s and later at 1.5 Mbit/s and 45 Mbit/s. Commercial Internet service providers (ISPs) emerged in the late 1980s and early 1990s. The ARPANET was decommissioned in 1990.

T3 NSFNET Backbone, c. 1992.
The Internet rapidly expanded in Europe and Australia in the mid to late 1980s and to Asia in the late 1980s and early 1990sThe beginning of dedicated transatlantic communication between the NSFNET and networks in Europe was established with a low-speed satellite relay between Princeton University and Stockholm, Sweden in December 1988. Although other network protocols such as UUCP had global reach well before this time, this marked the beginning of the Internet as an intercontinental network.
Steady advances in semiconductor technology and optical networking created new economic opportunities for commercial involvement in the expansion of the network in its core and for delivering services to the public. In mid-1989, MCI Mail and Compuserve established connections to the Internet, delivering email and public access products to the half million users of the Internet. Just months later, on 1 January 1990, PSInet launched an alternate Internet backbone for commercial use; one of the networks that added to the core of the commercial Internet of later years. In March 1990, the first high-speed T1 (1.5 Mbit/s) link between the NSFNET and Europe was installed between Cornell University and CERN, allowing much more robust communications than were capable with satellites. Six months later Tim Berners-Lee would begin writing WorldWideWeb, the first web browser after two years of lobbying CERN management. By Christmas 1990, Berners-Lee had built all the tools necessary for a working Web: the HyperText Transfer Protocol (HTTP) 0.9, the HyperText Markup Language (HTML), the first Web browser (which was also a HTML editor and could access Usenet newsgroups and FTP files), the first HTTP server software (later known as CERN httpd), the first web server, and the first Web pages that described the project itself. In 1991 the Commercial Internet eXchange was founded, allowing PSInet to communicate with the other commercial networks CERFnet and Alternet. Stanford Federal Credit Union was the first financial institution to offer online Internet banking services to all of its members in October 1994. In 1996 OP Financial Group, also a cooperative bank, became the second online bank in the world and the first in Europe. By 1995, the Internet was fully commercialized in the U.S. when the NSFNet was decommissioned, removing the last restrictions on use of the Internet to carry commercial traffic.

2005
2010
2017
World population
6.5 billion
6.9 billion
7.4 billion
Users worldwide
16%
30%
48%
Users in the developing world
8%
21%
41.3%
Users in the developed world
51%
67%
81%
As technology advanced and commercial opportunities fueled reciprocal growth, the volume of Internet traffic started experiencing similar characteristics as that of the scaling of MOS transistors, exemplified by Moore's law, doubling every 18 months. This growth, formalized as Edholm's law, was catalyzed by advances in MOS technologylaser lightwave systems, and noise performance.
Since 1995, the Internet has tremendously impacted culture and commerce, including the rise of near instant communication by email, instant messaging, telephony (Voice over Internet Protocol or VoIP), two-way interactive video calls, and the World Wide Web with its discussion forums, blogs, social networking, and online shopping sites. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1-Gbit/s, 10-Gbit/s, or more. The Internet continues to grow, driven by ever greater amounts of online information and knowledge, commerce, entertainment and social networking. During the late 1990s, it was estimated that traffic on the public Internet grew by 100 percent per year, while the mean annual growth in the number of Internet users was thought to be between 20% and 50%. This growth is often attributed to the lack of central administration, which allows organic growth of the network, as well as the non-proprietary nature of the Internet protocols, which encourages vendor interoperability and prevents any one company from exerting too much control over the network. As of 31 March 2011, the estimated total number of Internet users was 2.095 billion (30.2% of world population). It is estimated that in 1993 the Internet carried only 1% of the information flowing through two-way telecommunication, by 2000 this figure had grown to 51%, and by 2007 more than 97% of all telecommunicated


Post a Comment

0 Comments